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ABSTRACT 

We characterize those Banach spaces whose duals are isometric to L1 spaces 
in terms of the structure of the spaces of absolutely summing, integral, nuclear, 
and fully nuclear operators from or into these spaces. 

In [2] Grothendieck proved that the following are equivalent for a Banach 

space E: 

(I) E is isometric to an LI(p)  space; 

(II) E' is a ~1 space (see [3] for definition); 

(III) For  each pair of Banach spaces F _ G, d: E Q F ~ E @ G is an isometry 

where J is the canonical injection. (See [1, chap. 1, w for definitions.) 

In [4] Lindenstrauss and Lazar proved (using the terminology of [5]) that the 

following are equivalent for a Banach space E: 

(A) E is an 5r space for every e > 0; 

(B) E' is an Ll(~t) space. 

Our purpose here is to give other characterizations of the 5e~, 1 + ~ spaces in 

terms of classes of operators. An isomorphic version of our main result appears 

in [9], but we think it worthwhile to give the isometric versions without recourse 

to the results of [9]. 

We briefly define the operators with which we shall be concerned: 

1) T: E ~ F is absolutely summing [7, chap. 2] if 

I lT l t , s= in f{C:  ~ IITxi}] < C  sup ~ I(xi, x ' ) l  
i= 1 llx,ll=l g= 1 

all x~,. . . ,  x ,  ~ E and n = 1, 2,... } 
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is finite. 

2) T: E---,F is integral [-1, chap. 1, ~4] if the associated bilinear form on E x F'  

is integral, that is 

is finite. 

II zll,., = sup{ ~ (Tx,,y,): 
i = 1  

sup ] ~ <xi, x '><(y,y~)[  <1 } 
[ I x ' l l = l  i = 1  

II yll = 1 

3) T : E ~ F is quasi-nuclear [7, chap. 3] if there exists a sequence {x'i } - E' 

H ']1 such that ~ i ~ 1  xi < + o o ,  

][r ll  z I<x,x;>l,andl[Tl[ o=inf [Ix;l[ , 
i = 1  i = 1  

where the infimum is taken over all (x~} satisfying the above. 

4) An operator T : E ~ F is nuclear [1] if  there exist sequences 

{x;} ~ E', {y,} c F such that ~ II x; 11 11 Y~II < + oo, 
i = 1  

T x =  (x, xi)y, andl[Tl],,=inf ~= Ilx;ll Ily, II , 
i=1 i I 

where the infimum is taken over all such representations of T. 

(5) An operator T : E  ~ F is fully nuclear if the astriction T,,:E ~ T(E) is 

nuclear and the fully nuclear norm H T [[sn of T is II I1o 

It should be remarked that the set of  fully nuclear operators, in general, is not 

closed under addition [-9, th. 11.6]. 

I f  we denote the classes of operators defined in (1), (2), (3), (4) and (5) by 

AS(E, F), I(E, F), QN(E, F), N(E, F), and FN(E, F), respectively, then we have 

the following containments 

FN(E, F) ~_ N(E, F) Z QN(E, F) ~_ AS(E, F) 

FN(E, F) ~ N(E, F) c_ I(E, F) c AS(E, F) 

and the natural injections are all of  norm less than or equal to 1. (See [,1] and [-7].) 

We now prove the following theorem: 

THEOREM: The following are equivalent: 
(1) E is an .LPoo i+, space for each 8 > 0; 
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(2) E' is isometric to an LI(#) space; 

(3) N(E,F) and FN(E,F) are isometric for all Bausch spaces F; 

(4) I(E,F) and AS(E,F) are isometric for all Bausch spaces F; 

(5) N(E,F) and QN(E,F) are isometric for all Bausch spaces F; 

(6) AS(F,E) and I(F,E) are isometric for all Banach spaces F; 

(7) QN(F,E) and N(F,E) are isometric for all Bausch spaces F. 

REMARk: In statements (3)-(7) the word "isometric" stands for "equal as 

sets with the identity map being an isometry". 

PROOF. We have already discussed the equivalence of (1) and (2). We begin by 

showing that (4) implies (5). Suppose T : E ~ F is quasi-nuclear, then if we inject 

I:  F ~  I~(F), the composition IT  is nuclear and [l/rll.  = II rt l . .  and we have 

the following factorization [7, chap. 3] 

T I 
E----- F~---,-~(F) 

Co = s 

E 

Re 

R(E) 

T 
"F 

l~ 
So 

" SR(E) 

Fig. 1 Fig. 2 

where R and U are compact, II R LI < 1 + e, II U II < 1 + 5  and S is nuclear and 

II Slln < (1 + 5) IL XT II. =(1  + 5) II r]lq. Consider the following operators where, 

Ra, Sa, Ua are the astrictions of the above (Fig. 2). 

Since S is nuclear, Sa is absolutely summing and II so lla~--- It s I[as <: II s LI, 

and by (4) 

I[ SaRa Illn' = l[ SaRa Ila, :< II s~ IloXl + ~) 

Since U a is compact and II u~ < 1 + ~, it follows from [1, th. 10, p. 132] 

II Zlln = II UaSaRa[] n ~-~ (1 § 8)II auRal] i.t <= (i § 5)211 Sails s 

< (1 + 5) 211Sa II. < (1 + 8)311 z IIo. :< (1 + T II. 

so tl T LI.--LI T IIq. 
To prove that (5) implies (3) we need only note that if T: E ~ F is nuclear, then 

the astriction Ta: E ~  T(E) is quasi-nuclear, so by (5), 1[ zoll~.--II Tall,, 11 Tall, 

>-- II z II. and II Za II0. --- l[ Z II.' which establishes (3). 
We now prove that (3) implies (2). Let {(Fa, Ga)} be all pairs of finite dimen- 
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sional spaces such that F~ _ G, ~ l~ o. Let F = (~,F,)t2, G = (]~,G,)t., and let 

I: F ~ G the canonical isometry of F into G. Since F and G are reflexive with the 

metric approximation property, the nuclear operators from E to F and from E to G 

may canonically be identified with E' | F and E' | G. respectively, The canonical 

operator from E' ~ F to E' @ G is an isometry by (3). By the Hahn-Banach 

Theorem, if  T is a continuous linear functional on E' ~ F then T has an extension 
^ 

to E' | G such that [IT U = tl ~11. This means that given any continuous linear 

operator T: F ~ E", then there is an extension i": G ~ E", TI = T, such that 

II ~ II = I1 T II. This tells us that if  A _c B are finite dimensional spaces, and 

T: A ~ E" then there exists an extension T: B -~ E" with I1 T II = I[ i" II Choose r 

a large enough set so that we have an isometry J :  E" _~ l~o(F). We shall show 

that the canonical operator from E~'@ E" into E"~)l~o(F) is an isometry. Let 

~'~= lzi @ Yi be an element of E" | E", then ~,i = I zi | JYi is its canonical image in 

E" ~ l~o(F). There exists wl,. . . ,  w,, ~ E", ~1,'", ~m ~/o~(F) such that ]~i"= tzi | JYl 
m m /'/ j n 

= ]Ej= ,w j |  and ~]j= ,11 will II II z,= ,~ , |  Ty, ll +e. Let A = [  Yi],=I, 
B ~ lo~(F) such that A + [~j]jn= ~ _~ B. If  we define T : A ~ E" by T ( a ) = j - l ( a )  

then there exists an extension ~: B ~ E" with II ~ II -- II ~ II -- 1 Then Z~=lz, | y, 

= ~,;"=lwj| T~j and il II--<  llw ll [I [I--< 11 Tz,| ll+ . 
Thus we have an isometry, and by the Hahn-Banach Theorem, the identity 

operator on E" (and element of (E" | E")') has extension to E" @/~(F). This 

says that E" is isometric to a subspace of l~o(F)' that is complemented by a pro- 

jection of norm one. By Grothendieck's theorem [2], E ~' and E' are isometric to 

L~ spaces. We should point out that this proof is essentially that of theorem 4.1 

of [6] restated in the language of tensor products. 

To prove (1) implies (4), suppose T: E ~ F is absolutely summing. The integral 

norm of an operator T from E to F is the norm of T when considered as a linear 

functional on the space of operators (with usual operator norm) of finite rank 

from F to E, with the duality given by (S ,T ' )=vZ~=a(Txt ,  y't) where Sy 

' '1[ II = vZ~= l (y ,  yi)xl. Suppose Sy = ~ =  l (y ,  yi)xi, S < 1. Then we shall show 

] (S,  T )1 < (1 + ~)II T I1o~ which will prove II T I1,., --< [I T I1o~ Since E is an 

s ~+~ space there is a finite dimensional space X c E, d(X, loom) < 1 + e, where 

m = dim X, and x t ~ X for 1 < i < n. Suppose U: l m ~ X is an operator such that 

U V U 1, It  -'lt < ~ + =, and zj = uej  where {ej} is the canonical basis of 

lo~. Since xi ~ X ,  and {z j} is a basis of X, we have scalars t u such that x i 

= vZ~=ltuzj, 1 < i < n, and we have the following: 
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1 > sup [ISYI[ = 
Ilrll = 1 

sup [ <Sy, x'> i 
tlyll = 1 
II x'll = l 

i 1 j = l  

= sup ti.i<y,y'i> z j  : , , y ,  
j - - 1  i = 1  

> (1 + e)-~sup ]~ t i j<Y,Y ' i )  ej : y = 1 
j - 1  i = 1  

]Z = (1 + e)- 1 sup max tij<Y, Y'i) 
tlyll = i l ~ j < - m  " =  1 

that  is 

(*) max t i f f  i < 1 +  ~. 
l<j<_m i -  1 

On the other hand,  since T is absolutely summing we have: 

~] ][TzJ[I < ] lTll"ssup ~ I{zJ, x ' ) ] : [ l x ' l ] = l  
j = l  j 1 

I m } = ItrN,~sup ~ ]<Ue.,-,x'>l:llx'[l=l 
j 1 

!m } 
= I]Tl]a~sup ~ [<ej, U ' x ' ) l : ] [ x ' l [ = l  

j =  

< ]] T ]].s sup ] ( e  j, ~ ) ] :  ~ ~ l a", []~ [I = 1 
j 1 

= II TIlos; 

that  is 

j = l  

Combining  inequalities (*) and (**) we have: 
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I <s ,  T> I = 
/1 

i~=1 (Txi 'Y~)  

n m 

i j = l  

i = l  i = l  

j = l  i = l  

( I) tl Itlt < max tljy i Tz.i =< (1 + e) T as 
l < j < m  "= 1 j 1 

which shows that II T It,.,-- II [las" 
We have established the equivalence of (1) through (5). To facilitate the remain- 

der of  the proof  we introduce 

(7') Q(F, E) and N(F, E) are isometric for all Banach spaces F 

such that F" has the metric approximation property. 

We now show that (2) implies (6). It follows from [2] that E" is a ~1 space; 

that is, for any pair of  Banach spaces F ~ G, an operator T: F ~ E" has an 

extension ~: G ~ E" with [] iV [[ = l] T ][. Suppose T: F ~ E is absolutely summing, 

then it follows from I-7, chap. 3] that we may construct a factorization 

T ! 
T F -~E c:: E" F - -E 

Y = Z C(K) ~- L 1(ju ) 

Fig. 3 Fig. 4 

where Ra is an isometry, [] S [I < [] Tllas, and J ,  is the restriction and astriction of  
a canonical operator of  the type a : C(K) ~ Ll(p), Y _ C(K), K a compact Haus- 

dorff space, and # a measure on K. Since E" is a ~1 space, we may extend S to 

an operator ~ defined on LI(#) into E" and obtain the factorization (Fig. 4) with 

[] T [],,, = ]] ITI],, , = I] SJR I[i,,, < I] T[I " [] J I[,,, = ]] s n < J] S [I _-< ]] T [1" < [] r [l'"t" 
To prove (6) implies (7'), let F be a Banach space such that F" has the metric 

approximation property and let T: F ~ E be a quasi-nuclear operator and let 
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I:  E-*loo(F) be the canonical injection. The IT is nuclear, IIITII.= IL zll~., 
and we have the factorization of [7, chap. 3], 

TI 
F T E I F ~-E --~ (r) 

S 
c o ~ s 

R(F) - SR(F) 
Fig. 5 Fig. 6 

with I[R[[ < 1  +~, ][ul[ < 1  +e ,  II s II, <(1 + ~)LIIT il, 

From this we obtain the above factorization (Fig. 6). 

Since S, is absolutely summing, UaSa is absolutely summing and by hypothesis 

UaSa is integral and II UaSa Ilas = II U~ ]l,,, Since R a is compact and [IRa II < 1 + e, 

we have [1. lemma 14, p. 133] that 

[I e'aS;g; II. --< II R; [l'll s;g: [li,,, < (1 + ~)I[ NaSa [[,~ 

= (1 + e)II UaS, II,s < (1 + e)II S I1"' 11 U I[ 

_-< (1 § < ( 1 + 0 3 [ [ / z l l . = ( l + 0 3 [ I T [ I q . .  

Thus II r '  II. =< (1 + ~)311 r I1~. and since F"has the metric approximation property, 

II z II. = I[ r '  II. so 11 Z II. = II Z tlo~ 
In proving (7') -~ (2), let F = ( ~  �9 E~)z2, {E~} the finite dimensional subspaces 

of l~. Since l~ isometrically contains all separable Banach spaces, F has as subspa- 

ces, complemented by projections of norm 1, every finite dimensional Banach 

space. Also, F is reflexive and has the metric approximation property. If I :  E -4 G 

is an isometry into a Banach space G, and T: F ~ E is an operator such that IT is 

nuclear then T is quasi-nuclear, {I T IIq,, --< It IT I1,, and IIT II, = IIT tlq, by (7'). Since 

II xz II. = II r LI. this proves I] T II. = II IT II.; that is, the space of nuclear operators 

from F to E is isometric (under composition) to a subspace of the nuclear operators 

from F to G. Since F' has the approximation property, from the duality theorem 

[1], the restriction operator from Sr to s is onto and thus if 

S e ~(E,F), there exists an element g ~ ~(G,F), [I SII < (1 + e) II s [I, such that S 

is the restriction of S to E. What we have proved is this: if Ea is finite dimensional, 

E __ G, T: E ~ E~ is an operator, then there exists T: G ~ E, an extension of 
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T such that II ~li <(1 § T II. By repeating the argument of theorem 4.1 of [6], 

with obvious modifications, we have that E' is isometric to a complemented (by a 

projection of norm 1) subspace of an LI(#) space hence is an Lt(v ) space for some 

measure v [2]. 

Since (7) implies (7') is obvious we have only to show (1) implies (7). Suppose E 

is an ~v~.l + ~ space for each 5> 0, and T: F--,E is quasi-nuclear. If  I:  E ~ I~(F) 

is the canonical injection, then the composition IT  is nuclear, II ~T I1~ -- I1 T I1o. 
and we again have the factorization [7]: 

T 
F -----~ E 

c o 

1 
*eo~([] 

T~ 
Fig. 7 

T I 
F * E *s ( I )  

Ra U a 

sa J~-~e, 
R(F) " SR(F) 

Fig. 8 

with U and R compact, II R 1t < 1 + e, ii U tl < 1 + 5, and 11S ]t,, < (1 + z)1t ITI[," From 

this we obtain the above factorization (Fig. 8). Since U,: SR(F) ~ E is compact 

E is an L,e~,l+ . space for each ~ > 0, then there is an extension 0, :  It o E  with 

II V~ <(1 § ~)lf u.li [3]. Since JSa is nuclear and IlJsoll._< Ilsll., we have 
that IITII.=[I VjS~176 II llJsoll. IIR~ <(1 +~)2 IIsII. (1 +~)<  
(1 +~)' II XT 11. =(1 § II T Ilq. This proves II TII. = [I Tliq. and hence (1)impl es (7). 

The following corollaries follow immediately from the theorem. 

COROLLARY. l. Suppose T : E ~ F  is an operator of finite rank. I f  F is an 

~o1+~ space, then 11T [I,= = II T ll, = IIT [I,," If  E is an Zo~.j+~ space, all the 

above norms are equal to the fuIly-nuclear norm.The converse is also true, and 

follows easily from [2]. 

COROLLARY 2. (Pietsch [8])Suppose T: E ~ F  is of finite rank, E,F Banach 

spaces, then II zll~s -- II TIIq,'(Whichf~176176176176176 by consider- 

ing F as a subspace of some I~(F)). 

It is possible for us to give a proof of the following theorem of D. R. Lewis [10]: 

THEOREM. Let E be a Banach space. Then E' is isometric to I~(F) if and only 

if AS(E, F) and N(E, F) are isometric for all Banach spaces F. 

PROOZ. Suppose E' is isometric to ll(F ). Let T: E--* F be absolutely summing. 

By the theorem above, II Z I1~ IIT 11,,, Since the second conjugate of E has the 
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metric approximation property, we have [I T '  Ili.t = IIT N i.t and ]1 T '  [[. = l[ TH. 

[1, prop. 15]. By theorem 11 of [1] we know IIT' II. = 11 T'  il,~ If  AS(E,F) and 

N(E,F) are isometric, then I(E,F) and N(E,F) are isometric so E' is isometric 

to some LI(K, t~) which we may assume to be a positive Radon measure/~ on some 

locally compact Hausdorff space K. If  # is not purely atomic, then there exist a 
oo 2 ~ k.-)2n 1 measurable set A ~ K,/~(A) = c > 0 and sets {A.i}.=li=l such that = A.i=A, 

/~(A.i) = 2-"c. If x', is the element of E' corresponding to Xa.id/~ then [I x ' ,  I1 = 2-"c. 
t ~ 2n Define T"  E ~ Co such that Tx = {x.~(x)}. = li=l. The adjoint T ' :  11 ~ E' sends 

the unit bail of  t~ into the convex, balanced hull of  {x.~}. ffl~ ~"1 which, regardedas 

a subset of L~(K, #), is lattice bounded but not equimeasurable. By [1, prop. 9, p. 

64] we have that T is integral but not nuclear, thus T is compact and integral 

but not nuclear, which is a contradiction. Thus L~(K, I~) is purely atomic. 

It is possible to use the above argument and the theorem of  Zippin [11] that 

each infinite dimensional ~ , 1 + ~  space contains a subspace isometric to Co, to 

give a proof  of the following observation of D. R. Lewis: Let E be a Banach space 

such that AS(F, E) and N(F, E) are isometric for each Banach space F. Then E is 

finite dimensional. Since E must be an ~| ~ space, if E is infinite dimensional, 

there exists a subspace G _ E, G isometric to Co. Let F be any Banach space such 

that F '  is isometric to Ll(p), with/~ not purely atomic. Construct T:  F - ,  G as 

above such that T is integral but not nuclear. If  I :  F ~ E denotes containment, 

then IT is not nuclear unless T is since G is an ~ , ~  +~ space. Thus IT: F ~ E is 

integral but not nuclear. Thus E is finite dimensional. 

It would be very interesting to know what Banach spaces E have the property 

(i) that N(F, E) and I(F, E) are isometric (or even isomorphic) for every Banach 

space F or (ii) N(E, F) and I(E, F) are isometric for all F. I f  E is a reflexive Banach 

space with the metric approximation property, then E satisfies both (i) and (ii) 

[1, theorem 10]. I f  E is separable conjugate space with the metric approximation 

property, then E satisfies (ii) [1, theorem 10]. It would be interesting to know if  

there is a Banach space E that contains no subspace isomorphic to 11, such that 

N(E, F) is a proper subset of  I(E, F) for some F. 
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