CHARACTERIZATIONS OF BANACH SPACES
WHOSE DUALS ARE L, SPACES

BY
CHARLES STEGALL

ABSTRACT

We characterize those Banach spaces whose duals are isometric to L; spaces
in terms of the structure of the spaces of absolutely summing, integral, nuclear,
and fully nuclear operators from or into these spaces.

In [2] Grothendieck proved that the following are equivalent for a Banach
space E:

(D) E is isometric to an L,(y) space;

(1) E’is a &, space (see [3] for definition);

(IlI) For each pair of Banach spaces F < G, J: E (>I§ F-E (>A§ G is an isometry
where J is the canonical injection. (See [1, chap. 1, §1] for definitions.)

In [4] Lindenstrauss and Lazar proved (using the terminology of [5]) that the
following are equivalent for a Banach space E:

(A) Eisan &£, space for every ¢ > 0;

(B) E’is an L,(u) space.

Our purpose here is to give other characterizations of the Z,,,, ; , spaces in
terms of classes of operators. An isomorphic version of our main result appears
in [9], but we think it worthwhile to give the isometric versions without recourse
to the results of [9].

We briefly define the operators with which we shall be concerned:

1) T: E - F is absolutely summing [7, chap. 2] if

I

,,s=inf{C: p> [Tx. | =C sup s | Cxix'p]
i=1 1

flafll=1 i=

all x;,+-,x,eEand n =1,2,-
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is finite.

2) T: E—F isintegral [1, chap. 1, §4] if the associated bilinear form on E x F’
is integral, that is

7o =sup{ = (T,

sup 2 x> <{y YD I < 1}
Ilxli=1 1i=1
Nyl =1

is finite.
3) T: E—F is quasi-nuclear [7, chap. 3] if there exists a sequence {x;}<E’
such that X7 1” x,.’“ < + 0o,

| Tx] §E‘,ll(x,x§>[,and I q,,=inf{§1[

6] )
where the infimum is taken over all {x]} satisfying the above.
4) An operator T : E— F is nuclear [1] if there exist sequences

{x}} < E', {y;} < F such that % “ x| - “ yi| < + 0,
=1

Tx = 3 Goxpyoand [T, =inf {2 [x]-[5]] .
i=1 i=1

where the infimum is taken over all such representations of T.

(5) An operator T:E— F is fully nuclear if the astriction T,: E — T(E) is
nuclear and the fully nuclear norm | T |, of T'is | T, .

It should be remarked that the set of fully nuclear operators, in general, is not
closed under addition [9, th. IL6].

If we denote the classes of operators defined in (1), (2), (3), (4) and (5) by
AS(E,F), I(E,F), ON(E,F), N(E,F), and FN(E,F), respectively, then we have
the following containments

FN(E,F) < N(E,F) < QN(E, F) < AS(E, F)
FN(E,F) < N(E,F) < I(E, F) < AS(E, F)

and the natural injections are all of norm less than or equal to 1. (See [1] and [7].)
We now prove the following theorem:

THEOREM: The following are equivalent:
() Eisan £, {4+, space for each ¢ > 0;
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(2) E’ is isometric to an L{(u) space;

(3) N(E,F) and FN(E,F) are isometric for all Banach spaces F;
(4) I(E,F) and AS(E,F) are isometric for all Banach spaces F;
(5) N(E,F) and QN(E,F) are isometric for all Banach spaces F;
(6) AS(F,E) and I(F,E) are isometric for all Banach spaces F;
(7) QN(F,E) and N(F,E) are isometric for all Banach spaces F.

REMARK: In statements (3)-(7) the word ‘‘isometric’’ stands for ‘‘equal as
sets with the identity map being an isometry”’.

ProOF. We have already discussed the equivalence of (1) and (2). We begin by
showing that (4) implies (5). Suppose T : E - F is quasi-nuclear, then if we inject
I: F—>1_(I), the composition IT is nuclear and || IT ”,, = ” T “ n and we have
the following factorization [7, chap. 3]

T I E——F
E—> Fesi,(I)
Rl s M j T
Co—'——" 4
(E) —SR(E)
Fig. 1 Fig. 2
R”<1+a, U||<1+s and S is nuclear and

IS]<+e [T |, =1 +9 | T || Consider the following operators where,
R,,S,, U, are the astrictions of the above (Fig. 2).

Since § is nuclear, S, is absolutely summing and | S, .= [|S|a =[S,
and by (4)

| SoRa

e = | SeRals < | S st +2)

Since U, is compact and H U, H <1 + ¢, it follows from {1, th. 10, p. 132]
[T [0 =] UsSaRaln S (1 +8) | SuRa|ime <1 + 82| S |lus

< (1+¢)? IT|ms@+9°T

So [ Tfu=]T e
To prove that (5) implies (3) we need only note thatif T: E — F is nuclear, then

= Tolw | Tulls
> ” T\, T |,, which establishes (3).
We now prove that (3) implies (2). Let {(F,,G,)} be all pairs of finite dimen-

Llw=]
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sional spaces such that F, < G,< . Let F =(X,F,),,, G=(X,G,),, and let
I: F — G the canonical isometry of F into G. Since F and G are reflexive with the
metric approximation property, the nuclear operators from E to F and from E to G
may canonically be 1dent1ﬁed W1th E’ ® Fand E’ ® G, respectively, The canonical
operator from E’ OF to E’ O G is an isometry by (3). By the Hahn-Banach
Theorem, if T is a continuous linear functional on E’ (:§ F then T has an extension
T'to E’ ® G such that | T[ =] 7. This means that given any continuous linear
operator T: F — E”, then there is an extension T: G —E”, TI =T, such that
T T|. This tells us that if 4 < B are finite dimensional spaces, and
T: A— E" then there exists an extension T: B — E” with | T| = | T |. Choose T
a large enough set so that we have an isometry J: E” < I (I'). We shall show
that the canonical operator from E” @ E” into E” ® I(T) is an isometry. Let
27 1z;® y; be an element of E” é E”,then X!_ ,z; ® Jy;is its canonical image in
E” ® 1 (). There exists wy, -, Wy €E", &, &n €l (D) such that T2, ® Jy,
= 57wy ® 8 and By 18]S | T 2@ Tl e Let A=Dds
B < 1(T) such that 4 + [¢;]7- ; < B. If we define T : A —» E” by T(a)=J""(a)
then there exists an extension T: B— E”with | 7| = | T| = 1. Then Z{- 2z, ® y;
=X w,;® T¢; and ﬂ 2 1zi®y,-|| <X 1” W; ]| ” T¢, “ < “ E'i’zi®in||+s.
Thus we have an isometry, and by the Hahn-Banach Theorem, the identity
operator on E” (and element of (E”'éE”)’) has extension to E”é I,(I'). This
says that E” is isometric to a subspace of I (I')’ that is complemented by a pro-
jection of norm one. By Grothendieck’s theorem [2], E” and E’ are isometric to
L, spaces. We should point out that this proof is essentially that of theorem 4.1
of [6] restated in the language of tensor products.

To prove (1) implies (4), suppose T': E — F is absolutely summing. The integral
norm of an operator T from E to F is the norm of T when considered as a linear
functional on the space of operators (with usual operator norm) of finite rank
from F to E, with the duality given by {S,T"y =2X!_,{(Tx,y;> where Sy
= X' 1y, yx;. Suppose Sy = Zi_{(y,y>x;, | S| £1. Then we shall show
] (S, T )] <(1+¢ || T |, which will prove || int = ” T |, Since E is an
Z . 1+. space there is a finite dimensional space X < E, d(X,17) <1 + ¢, where
m =dim X, and x,€ X for 1 < i < n. Suppose U: Iy —» X is an operator such that
lu|=1, |U-! | <t+e, and z;=Ue; where {e;} is the canonical basis of
I Since x;€X, and {z;} is a basis of X, we have scalars #; such that x;

J _1t;Z;, 1 £ i< n, and we have the following:
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1>” sup Isy| = sup 1[ {8y, x|
ol =
el =1

sup { X Xt
i=1

Jj

— s (| £ £ o Ju] Il =]

v

(1 + &)~ 'sup {

ji=

X ;4 |

i=

= (1+¢~!' sup max

Pll=1 12jsm

that is

*) max | X t;yi \ <1+e.

1sjsm Mi=1

On the other hand, since T is absolutely summing we have:

RALAE urumsup{ E G| =1
= sup E s 4 }
= T fass p{]z Ul | = 1]
<|T ,,ssup{ 2 |<epddi el €|\=1}
j=1
I T a3
that is
() AL LI

Combining inequalities (*) and (**) we have:

-

2 (2 w0 eyl =1]
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(8.1 = | 2 (Tx]

= i § tij<Tsty’i>|
i=1 j=1

= E‘. (Tz,, an t,.jy§>‘
i=1 i=1

s 275 |2 o]

< (max lE 1Y l[) z “TZ ”<(1+8)“
12jsm "i=

which shows that | T | = || T [ 4
We have established the equivalence of (1) through (5). To facilitate the remain-

der of the proof we introduce

(7") Q(F,E) and N(F,E) are isometric for all Banach spaces F
such that F” has the metric approximation property.

We now show that (2) implies (6). It follows from [2] that E” is a &, space;
that is, for any pair of Banach spaces F < G, an operator T: F —» E" has an
extension T: G — E” with | 7| = | T'|. Suppose T': F — E is absolutely summing,
then it follows from [7, chap. 3] that we may construct a factorization

T I,
F——E F—>ECE
Ral | TS Rl Iré
Y—9, 7 ClK)——L ()
Fig. 3 Fig. 4

where R, is anisometry, | S| £ | T|.s and J, is the restriction and astriction of
a canonical operator of the type J: C(K)— L,(¢), Y € C(K), K a compact Haus-

dorff space, and p a measure on K. Since E” is a 2, space, we may extend S to
an operator § defined on L,(u)into E” and obtain the factorization (Fig. 4) with
T = 1T = 1SR L S [ 7] [ L= | ST S [ S]1 S| S [T e

To prove (6) implies (7'), let F be a Banach space such that F” has the metric
approximation property and let T: F — E be a quasi-nuclear operator and let
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“n=“T’

— E
(F)
From this we obtain the above factorization (Fig. 6).

Since S, is absolutely summing, U,S, is absolutely summing and by hypothesis
U,S,isintegral and H U,S, “as = | U,S,
we have [1. lemma 14, p. 133] that

| ReS UL = | Re| - | SeUfiwe < (1 +8) | UaSa i
(L +8) | US,fes= (1 + )| S|as | U]
< (o) s Pl =+ T

Thus | T' |, £ (1 + ¢)*|| T ||,, and since F" has the metric approximation property,
[Tl =T so [T]u=]T|m

Sns
and we have the factorization of [7, chap. 3],

F—rE —> (1) I
(F)

R l . T1u

Cg——> £

Fig. § Fig. 6

with H R

|17 |l

Iint' Since R, is compact and ” R, H <1+e

In proving (7}~ (2), let F = (X, ® E,),,, {E,} the finite dimensional subspaces
of I,. Since I, isometrically contains all separable Banach spaces, F has as subspa-
ces, complemented by projections of norm 1, every finite dimensional Banach
space. Also, F is reflexive and has the metric approximation property. If I: E > G
is an isometry into a Banach space G, and T: F — E is an operator such that IT ig
nuclear then T is quasi- P ” IT I . and “ T ” = “ T ( a 0y (77). Since
T, <| 1], »; that is, the space of nuclear operators
from F to E is isometric (under composition) to a subspace of the nuclear operators
from F to G. Since F' has the approximation property, from the duality theorem
[1], the restriction operator from Z(G,F) to Z(E,F) is onto and thus if

is the restriction of ' to E. What we have proved is this: if E, is finite dimensional,

E =G, T:E—E,is an operator, then there exists T: G — E, an extension of
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T such that H T" <(l+¢) “ T H By repeating the argument of theorem 4.1 of [6],
with obvious modifications, we have that E’ is isometric to a complemented (by a
projection of norm 1) subspace of an L,(u) space hence is an L,(v) space for some
measure v [2].

Since (7) implies (7') is obvious we have only to show (1) implies (7). Suppose E
isan %, space for each ¢> 0, and T: F-E is quasi-nuclear. If I: E - [_(I")

is the canonical injection, then the composition IT is nuclear, ] IT Hn = ” T “,1"

and we again have the factorization [7]:

T o1
F— E —£o(l) Fm el

Rl TU RO UG
S P) Sq
Co T "% R(F) —> SR(F) <7,
Fig. 7 Fig. 8

with U and R compact, | R| <1+ |U| < 1+¢and| S|, <(1+&)[[1T],. From

this we obtain the above factorization (Fig. 8). Since U,: SR(F) - E is compact

Eisan & _,,, space for each ¢ > 0, then there is an extension U,: 1, - E with

| .| <+ U,| [3]. Since JS, is nuclear and |JS,|,<|S |, we have

that | T, = | TSk fu £ |0 [0S ], [R <07 [s], (+a<

(1+&)* | IT |,=(1+&)* || T | This proves | T|,= || T, and hence (1) impl es (7).
The following corollaries follow immediately from the theorem.

COROLLARY. 1. Suppose T:E—F is an operator of finite rank. If F is an
& o 1+, Space, then H Tuas = || T “,, = || T[li,,,. If Eis an £ ., space, all the
above norms are equal to the fully-nuclear norm.The converse is also true, and
follows easily from [2].

CoROLLARY 2. (Pietsch [8]) Suppose T: E - F is of finite rank, E,F Banach
s = ” T “qn' (Which follows from the above corollary by consider-

spaces, then H T|
ing F as a subspace of some [ _(I").
It is possible for us to give a proof of the following theorem of D. R. Lewis [10]:

THEOREM. Let E be a Banach space. Then E' is isometric to 1,(I) if and only
if AS(E,F) and N(E, F) are isometric for all Banach spaces F.

Proor. Suppose E’ is isometric to [;(I'). Let T: E — F be absolutely summing.
By the theorem above,

T “'as = “ T [] e Since the second conjugate of E has the



Vol. 11, 1972 BANACH SPACES WHOSE DUALS ARE L, 307

metric approximation property, we have ” T i = “ T H,—,,, and H T’ i,, = H T,
[1, prop. 15]. By theorem 11 of [1] we know | T’ |, = | T* s If AS(E, F) and
N(E, F) are isometric, then I(E,F) and N(E,F) are isometric so E’ is isometiic
to some L,(K, p) which we may assume to be a positive Radon measure pon some

locally compact Hausdorff space K. If u is not purely atomic, then there exist a
measurable set A S K, u(4) = ¢ > 0 and sets {4,;}72;~, such that UL, 4,,=A4,
wWA,)=2""c. If x,; is the element of E’ corresponding to y 4,;,dp then H X, H =2""c.
Define T : E - ¢, such that Tx = {x,/(x)}?_ ,;>",. The adjoint T': [, - E’ sends
the unit ball of I, into the convex, balanced hull of {x,;}, ,, 2", which, regarded as
a subset of L, (K, ), is lattice bounded but not equimeasurable. By [1, prop. 9, p.
64] we have that T is integral but not nuclear, thus T is compact and integral

but not nuclear, which is a contradiction. Thus L,(K, y) is purely atomic.

It is possible to use the above argument and the theorem of Zippin [11] that
each infinite dimensional .#_ ;,, space contains a subspace isometric to ¢, to
give a proof of the following observation of D. R. Lewis: Let E be a Banach space
such that AS(¥, E) and N(F,E) are isometric for each Banach space F. Then E is
finite dimensional. Since E must be an £ , , , space, if E is infinite dimensional,
there exists a subspace G < E, G isometric to ¢,. Let F be any Banach space such
that F' is isometric to L,(u), with u not purely atomic. Construct T: F - G as
above such that T is integral but not nuclear. If I: F — E denotes containment,
then IT is not nuclear unless 7 is since G is an & ; ,, space. Thus IT: F - E is

integral but not nuclear. Thus E is finite dimensional.

1t would be very interesting to know what Banach spaces E have the property
(i) that N(F,E) and I(F,E) are isometric (or even isomorphic) for every Banach
space F or (ii) N(E, F) and I(E, F) are isometric for all F. If E is a reflexive Banach
space with the metric approximation property, then E satisfies both (i) and (ii)
[1, theorem 10]. If E is separable conjugate space with the metric approximation
property, then E satisfies (ii) [1, theorem 10]. It would be interesting to know if
there is a Banach space E that contains no subspace isomorphic to /,, such that
N(E, F) is a proper subset of I(E, F) for some F.
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